Учебник по Corel Painter 8.0


Немного о фракталах


Фракталы — это удивительные геометрические объекты, долгое время почему-то остававшиеся незамеченными. Даже в воображении математиков фракталы появились сравнительно недавно, около ста лет назад. В действительности фракталы буквально окружают нас. Фракталы — это то, что подобно самому себе. Их трудно точно измерить с помощью циркуля или линейки, клеток или кубиков. Примерами подобных объектов могут быть береговые линии, русла рек, облака, горы, овраги, ветви деревьев, наросты кристаллов, то есть все ветвящееся и самоподобное.

Определяющее свойство самоподобной геометрической фигуры состоит в том, что её можно разрезать на конечное число одинаковых фигур, подобных исходной. Разумеется, самоподобие в природе допускает случайные отклонения.

Самоподобие, то есть повторение объекта в бесконечной последовательности масштабов, приводит к тому, что фракталы обладают дробной размерностью. Что такое дробная размерность?

Известно, что самый простой способ измерить длину кривой — аппроксимировать ее прямолинейными отрезками. Чем короче отрезки, тем выше точность. Если попытаться измерить длину обыкновенной линии с помощью циркуля или линейки, то по мере уменьшения раствора циркуля или цены деления линейки в пределе получаем постоянную величину, которая принимается за длину линии.

С фрактальной кривой не так. По мере уменьшения масштаба измерений результат меняется, длина фрактальной кривой увеличивается до тех пор, пока цена деления не станет соизмеримой с толщиной линии. Получается, что длина фрактальной линии бесконечна, поскольку линия повторяет сама себя. Таким образом, фрактальная кривая — это уже не линия, но еще и не поверхность. Она обладает переходной, то есть дробной, размерностью. Такой же результат даст измерение площади фрактальной поверхности или объема трехмерного фрактального тела. В этих случаях получится также дробная размерность.

Этим занимается фрактальная геометрия. Сам термин фрактал был введен в 1975 голу родоначальником этого направления в математике Бенуа Б. Мандельбротом при описании множеств, тогда же и была применена дробная размерность.




- Начало -  - Назад -  - Вперед -



Книжный магазин